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Motivating the Magnetic Field Concept: 

Forces Between Currents

How can we describe a force field around wire 1 that can be used to determine the force on wire 2?

Magnetic forces arise whenever we have charges in motion.  Forces between current-carrying wires 

present familiar examples that we can use to determine what a magnetic force field should look like: 

Here are the easily-observed facts:



Magnetic Field
The geometry of the magnetic field is set up to correctly model forces between currents that 

allow for any relative orientation.  The magnetic field intensity, H, circulates around its source, I1,

in a direction most easily determined by the right-hand rule:  Right thumb in the direction of the 

current, fingers curl in the direction of H

Note that in the third case (perpendicular currents), I2 is in the same direction as H, so that their 

cross product (and the resulting force) is zero.   The actual force computation involves a different

field quantity, B, which is related to H through B = H in free space.  This will be taken up in 

a later lecture.  Our immediate concern is how to find H from any given current distribution.



Biot-Savart Law

The Biot-Savart Law specifies the 

magnetic field intensity,  H, arising 

from a “point source” current element 

of differential length dL.

Note in particular the inverse-square 

distance dependence, and the fact that 

the cross product will yield a field vector 

that points into the page.  This is a formal 

statement of the right-hand rule

Note the similarity to Coulomb’s Law, in which 

a point charge of magnitude dQ1 at Point 1 would 

generate electric field at Point 2 given by:

The units of H are [A/m]
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Magnetic Field Arising From a Circulating Current

At point P, the magnetic field associated with 

the differential current element IdL is 

The contribution to the field at P from any portion of the current will be just the above integral evalated

over just that portion.

To determine the total field arising from the closed circuit path, 

we sum the contributions from the current elements that make up

the entire loop, or



Example of the Biot-Savart Law

In this example, we evaluate the magnetic field intensity on the y axis (equivalently in the xy plane) 

arising from a filament current of infinite length in on the z axis.

Using the drawing, we identify:

and so.. 

so that:



Example: continued

We now have:

Integrate this over the entire wire:

..after carrying out the cross product



Example: concluded

we have:

finally:

Current is into the page. 

Magnetic field streamlines 

are concentric circles, whose magnitudes

decrease as the inverse distance from the z axis

Evaluating the integral:



Field Arising from a Finite Current Segment
In this case, the field is to be found in the xy plane at Point 2.  

The Biot-Savart integral is taken over the wire length:

..after a few additional steps (see Problem 7.8), we find:



Example 7.1





Another Example Biot-Savart LAW: Magnetic 

Field from a Current Loop

Consider a circular current loop of radius a in the x-y plane, which 

carries steady current I.  We wish to find the magnetic field strength

anywhere on the z axis.

We will use the Biot-Savart Law:

where:



Example: Continued

Substituting the previous expressions, the Biot-Savart Law becomes:

carry out the cross products to find:

but we must include the angle dependence in the radial

unit vector:

with this substitution, the radial component will integrate to zero, meaning that all radial components will

cancel on the z axis.  



Magnetic Moment

Now, only the z component remains, and the integral 

evaluates easily:

Note the form of the numerator:  the product of

the current and the loop area.  We define this as 

the magnetic moment:





Two- and Three-Dimensional Currents

On a surface that carries uniform surface current

density K [A/m], the current within width b is

..and so the differential current quantity that

appears in the Biot-Savart law becomes:

The magnetic field arising from a current 

sheet is thus found from the two-dimensional 

form of the Biot-Savart law:

In a similar way, a volume current will be made up

of three-dimensional current elements, and so the Biot-Savart

law for this case becomes:



Ampere’s Circuital Law



Ampere’s Circuital Law

Ampere’s Circuital Law states that the line integral of H about any closed path 

is exactly equal to the direct current enclosed by that path.

In the figure at right, the integral of H about closed paths a and b gives

the total current I,  while the integral over path c  gives only that portion 

of the current that lies within c



Ampere’s Law Applied to a Long Wire



Ampere’s Law Applied to a Long Wire



Choosing path a, and integrating H around the circle 

of radius  gives the enclosed current, I:

so that: as before.

Symmetry suggests that H will be circular, constant-valued

at constant radius, and centered on the current (z) axis.



Ampere’s Law Applied to Coaxial 

Transmission Line



Coaxial Transmission Line

In the coax line, we have two concentric 

solid conductors that carry equal and opposite

currents, I.  

The line is assumed to be infinitely long, and the

circular symmetry suggests that H will be entirely

 - directed, and will vary only with radius .

Our objective is to find the magnetic field 

for all values of 



Field Between Conductors

a < < b



Field Within the Inner Conductor

With current uniformly distributed inside the conductors, the H can be assumed circular everywhere.

Inside the inner conductor, and at radius we again have:

But now, the current enclosed is

so that or finally:



Field Outside Both Conducors

Outside the transmission line, where > c, 

no current is enclosed by the integration path,

and so 

0

As the current is uniformly distributed, and since we

have circular symmetry, the field would have to 

be constant over the circular integration path, and so it

must be true that:



Field Inside the Outer Conductor

Inside the outer conductor, the enclosed current consists

of that within the inner conductor plus that portion of the 

outer conductor current existing at radii less than 

Ampere’s Circuital Law becomes

..and so finally:



Magnetic Field Strength as a Function of Radius in 

the Coax Line

Combining the previous results, and assigning dimensions as shown in the inset below, we find:



Magnetic field due to a Current Sheet



Magnetic Field Arising from a Current Sheet

For a uniform plane current in the y direction, we expect an x-directed H field from symmetry.

Applying Ampere’s circuital law to the path we find:

or

In other words, the magnetic field is discontinuous across the current sheet by the magnitude of the surface 

current density.



Magnetic Field Arising from a Current Sheet

If instead, the upper path is elevated to the line between    and     , the same current is enclosed and we would have

from which we conclude that 

By symmetry, the field above the sheet must be

the same in magnitude as the field below the sheet.

Therefore, we may state that

and

so the field is constant in each region (above and below the current plane)



Magnetic Field Arising from a Current Sheet

The actual field configuration is shown below, in which magnetic field above the current sheet is 

equal in magnitude, but in the direction opposite to the field below the sheet.

The field in either region is found by the cross product:

where aN is the unit vector that is normal to the 

current sheet, and that points into the region in 

which the magnetic field is to be evaluated.



Magnetic Field Arising from Two Current Sheets

Here are two parallel currents, equal and opposite, as you would find in a parallel-plate 

transmission line.  If the sheets are much wider than their spacing, then the magnetic field

will be contained in the region between plates, and will be nearly zero outside.

K1 = -Ky ay

K2 = -Ky ay

Hx1 (z < -d/2 )

Hx1 (-d /2 < z < d/2 )

Hx2 (-d /2 < z < d/2 )

Hx2 (z < -d/2 )

Hx1 (z > d/2 )

Hx2 (z > d/2 )
These fields cancel for current sheets of 

infinite width.

These fields cancel for current sheets of 

infinite width.

These fields are equal and add to give

H = K x aN    (-d/2 < z < d/2 )

where K is either K1 or K2



Magnetic field due to a Solenoid



Current Loop Field

Using the Biot-Savart Law, we previously found the magnetic

field on the z axis from a circular current loop:

We will now use this result as a building block

to construct the magnetic field on the axis of 

a solenoid -- formed by a stack of identical current

loops, centered on the z axis.



On-Axis Field Within a Solenoid

We consider the single current loop field as a differential 

contribution to the total field from a stack of N closely-spaced

loops, each of which carries current I.  The length of the stack

(solenoid) is d, so therefore the density of turns will be N/d.

Now the current in the turns within a differential length, dz, will be

z

-d/2

d/2

so that the previous result for H from a single loop:

now becomes:

in which z is measured from the center of the coil,

where we wish to evaluate the field.

We consider this as our differential “loop current”



Solenoid Field, Continued

z

-d/2

d/2

The total field on the z axis at z = 0 will be the sum of the 

field contributions from all turns in the coil -- or the integral

of dH over the length of the solenoid.



Approximation for Long Solenoids 

z

-d/2

d/2

We now have the on-axis field at the solenoid midpoint (z = 0):

Note that for long solenoids, for which                , the

result simplifies to: 

(           )

This result is valid at all on-axis positions deep within long coils -- at distances from each end of several radii.  



Solenoid Field – Ampere’s Law

To find the field within a solenoid, we apply Ampere’s Circuital Law in the following way:

The illustration below shows the solenoid cross-section, from a lengthwise cut through the z axis.  Current in

the windings flows in and out of the screen in the circular current path.  Each turn carries current I. The magnetic

field along the z axis is NI/d as we found earlier.  



Application of Ampere’s Law

Applying Ampere’s Law to the rectangular path shown below leads to the following:

Where allowance is made for the existence of a radial H component, 



Radial Path Segments

The radial integrals will now cancel, because they are oppositely-directed, and because in the long coil,

is not expected to differ between the two radial path segments.



Completing the Evaluation

What is left now are the two z integrations, the first of which we can evaluate as shown.  Since

this first integral result is equal to the enclosed current, it must follow that the second integral -- and 

the outside magnetic field -- are zero. 



Finding the Off-Axis Field

The situation does not change if the lower z-directed path is raised above the z axis.  The vertical

paths still cancel, and the outside field is still zero.  The field along the path A to B is therefore NI/d

as before. 

Conclusion:  The magnetic field within a long solenoid is approximately constant throughout the coil 

cross-section, and is Hz = NI/d.
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Curl



Curl of a Vector Field

The direction of N is taken using the right-hand convention:  With fingers of the right hand oriented

in the direction of the path integral, the thumb points in the direction of the normal (or curl).



Curl in Rectangular Coordinates

Assembling the results of the rectangular loop integration exercise, we find the vector field

that comprises curl H:

An easy way to calculate this is to evaluate the following determinant:

which we see is equivalent to the cross product of the del operator with the field:



Curl in Other Coordinate Systems



Visualization of Curl

Consider placing a small “paddle wheel” in a flowing stream of water, as shown below.  The wheel 

axis points into the screen, and the water velocity decreases with increasing depth. 

The wheel will rotate clockwise, and give a curl component that points into the screen (right-hand rule).

Positioning the wheel at all three orthogonal orientations will yield measurements of 

all three components of the curl.  Note that the curl is directed normal to both the field 

and the direction of its variation.



Another Maxwell Equation

This is Ampere’s Circuital Law in point form.



We already know that for a static 

electric field:

Therefore, a field is conservative if it has  zero curl at all points over which the field is defined.



Stoke’s Theorem



Stokes’ Theorem

.



Obtaining Ampere’s Circuital Law in Integral Form, 

using Stokes’ Theorem

Begin with the point form of Ampere’s Law for static fields:

Integrate both sides over surface S:

..in which the far right hand side is found from the left hand side

using Stokes’ Theorem.  The closed path integral is taken around the 

perimeter of S.  Again, note that we use the right-hand convention in 

choosing the direction of the path integral.

The center expression is just the net current through surface S, 

so we are left with the integral form of Ampere’s Law:










