Engineering Electromagnetics W. H. Hayt, Jr. and J. A. Buck

Chapter 1: Vector Analysis

Vector Addition

Associative Law: $\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$ Distributive Law: $(r + s)(\mathbf{A} + \mathbf{B}) = r(\mathbf{A} + \mathbf{B}) + s(\mathbf{A} + \mathbf{B})$

Rectangular Coordinate System

Point Locations in Rectangular Coordinates

Differential Volume Element

Summary

Orthogonal Vector Components

Orthogonal Unit Vectors

Vector Representation in Terms of Orthogonal Rectangular Components

Summary

Vector Expressions in Rectangular Coordinates

General Vector, **B**:

$$\mathbf{B} = B_x \mathbf{a}_x + B_y \mathbf{a}_y + B_z \mathbf{a}_z$$

Magnitude of **B**:

$$|\mathbf{B}| = \sqrt{B_x^2 + B_y^2 + B_z^2}$$

Unit Vector in the Direction of **B**:

$$\mathbf{a}_B = \frac{\mathbf{B}}{\sqrt{B_x^2 + B_y^2 + B_z^2}} = \frac{\mathbf{B}}{|\mathbf{B}|}$$

Example

Specify the unit vector extending from the origin toward the point G(2, -2, -1)

$$\mathbf{G} = 2\mathbf{a}_x - 2\mathbf{a}_y - \mathbf{a}_z$$

$$|\mathbf{G}| = \sqrt{(2)^2 + (-2)^2 + (-1)^2} = 3$$

$$\mathbf{a}_{G} = \frac{\mathbf{G}}{|\mathbf{G}|} = \frac{2}{3}\mathbf{a}_{x} - \frac{2}{3}\mathbf{a}_{y} - \frac{1}{3}\mathbf{a}_{z} = 0.667\mathbf{a}_{x} - 0.667\mathbf{a}_{y} - 0.333\mathbf{a}_{z}$$

Vector Field

We are accustomed to thinking of a specific vector:

 $\mathbf{v} = v_x \mathbf{a}_x + v_y \mathbf{a}_y + v_z \mathbf{a}_z$

A vector field is a *function* defined in space that has magnitude and direction at all points:

$$\mathbf{v}(\mathbf{r}) = v_x(\mathbf{r})\mathbf{a}_x + v_y(\mathbf{r})\mathbf{a}_y + v_z(\mathbf{r})\mathbf{a}_z$$

where $\mathbf{r} = (x,y,z)$

The Dot Product

Given two vectors **A** and **B**, the *dot product*, or *scalar product*, is defined as the product of the magnitude of **A**, the magnitude of **B**, and the cosine of the smaller angle between them,

$$\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta_{AB}$$

Commutative Law:

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$$

Vector Projections Using the Dot Product

B • **a** gives the component of **B** in the horizontal direction

(**B** • **a**)**a** gives the *vector* component of **B** in the horizontal direction

Operational Use of the Dot Product

Given
$$\begin{cases} \mathbf{A} = A_x \mathbf{a}_x + A_y \mathbf{a}_y + A_z \mathbf{a}_z \\ \mathbf{B} = B_x \mathbf{a}_x + B_y \mathbf{a}_y + B_z \mathbf{a}_z \end{cases}$$

Find
$$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z$$

where we have used:
$$\begin{cases} \mathbf{a}_x \cdot \mathbf{a}_y = \mathbf{a}_y \cdot \mathbf{a}_z = \mathbf{a}_x \cdot \mathbf{a}_z = 0\\ \mathbf{a}_x \cdot \mathbf{a}_x = \mathbf{a}_y \cdot \mathbf{a}_y = \mathbf{a}_z \cdot \mathbf{a}_z = 1 \end{cases}$$

Note also: $\mathbf{A} \cdot \mathbf{A} = A^2 = |\mathbf{A}|^2$

Cross Product

The cross product $\mathbf{A} \times \mathbf{B}$ is a vector; the magnitude of $\mathbf{A} \times \mathbf{B}$ is equal to the product of the magnitudes of \mathbf{A} , \mathbf{B} , and the sine of the smaller angle between \mathbf{A} and \mathbf{B} ; the direction of $\mathbf{A} \times \mathbf{B}$ is perpendicular to the plane containing \mathbf{A} and \mathbf{B} and is along that one of the two possible perpendiculars which is in the direction of advance of a right-handed screw as \mathbf{A} is turned into \mathbf{B} .

Operational Definition of the Cross Product in Rectangular Coordinates

Begin with: $\mathbf{A} \times \mathbf{B} = A_x B_x \mathbf{a}_x \times \mathbf{a}_x + A_x B_y \mathbf{a}_x \times \mathbf{a}_y + A_x B_z \mathbf{a}_x \times \mathbf{a}_z$ $+ A_y B_x \mathbf{a}_y \times \mathbf{a}_x + A_y B_y \mathbf{a}_y \times \mathbf{a}_y + A_y B_z \mathbf{a}_y \times \mathbf{a}_z$ $+ A_z B_x \mathbf{a}_z \times \mathbf{a}_x + A_z B_y \mathbf{a}_z \times \mathbf{a}_y + A_z B_z \mathbf{a}_z \times \mathbf{a}_z$

where
$$\begin{cases} \mathbf{a}_{x} \times \mathbf{a}_{y} = \mathbf{a}_{z} \\ \mathbf{a}_{y} \times \mathbf{a}_{z} = \mathbf{a}_{x} \\ \mathbf{a}_{z} \times \mathbf{a}_{x} = \mathbf{a}_{y} \end{cases}$$

Therefore:

 $\mathbf{A} \times \mathbf{B} = (A_y B_z - A_z B_y) \mathbf{a}_x + (A_z B_x - A_x B_z) \mathbf{a}_y + (A_x B_y - A_y B_x) \mathbf{a}_z$

Or...
$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Circular Cylindrical Coordinates

Point *P* has coordinates Specified by $P(\rho,\phi,z)$

Orthogonal Unit Vectors in Cylindrical Coordinates

Differential Volume in Cylindrical Coordinates

Summary

Point Transformations in Cylindrical Coordinates

Dot Products of Unit Vectors in Cylindrical and Rectangular Coordinate Systems

	$\mathbf{a}_{ ho}$	\mathbf{a}_{ϕ}	\mathbf{a}_{z}
\mathbf{a}_{χ} .	$\cos\phi$	$-\sin$	0
\mathbf{a}_{y} .	$\sin \phi$	$\cos\phi$	0
\mathbf{a}_{z} .	0	0	0

Example

Transform the vector, $\mathbf{B} = y\mathbf{a}_x - x\mathbf{a}_y + z\mathbf{a}_z$

into cylindrical coordinates:

Transform the vector,

$$\mathbf{B} = y\mathbf{a}_x - x\mathbf{a}_y + z\mathbf{a}_z$$

into cylindrical coordinates:

Start with:

$$B_{\rho} = \mathbf{B} \cdot \mathbf{a}_{\rho} = y(\mathbf{a}_{x} \cdot \mathbf{a}_{\rho}) - x(\mathbf{a}_{y} \cdot \mathbf{a}_{\rho})$$

$$B_{\phi} = \mathbf{B} \cdot \mathbf{a}_{\phi} = y(\mathbf{a}_x \cdot \mathbf{a}_{\phi}) - x(\mathbf{a}_y \cdot \mathbf{a}_{\phi})$$

Transform the vector,

$$\mathbf{B} = y\mathbf{a}_x - x\mathbf{a}_y + z\mathbf{a}_z$$

into cylindrical coordinates:

Then:

$$B_{\rho} = \mathbf{B} \cdot \mathbf{a}_{\rho} = y(\mathbf{a}_{x} \cdot \mathbf{a}_{\rho}) - x(\mathbf{a}_{y} \cdot \mathbf{a}_{\rho})$$

$$= y \cos \phi - x \sin \phi = \rho \sin \phi \cos \phi - \rho \cos \phi \sin \phi = 0$$

$$B_{\phi} = \mathbf{B} \cdot \mathbf{a}_{\phi} = y(\mathbf{a}_{x} \cdot \mathbf{a}_{\phi}) - x(\mathbf{a}_{y} \cdot \mathbf{a}_{\phi})$$

$$= -y \sin \phi - x \cos \phi = -\rho \sin^{2} \phi - \rho \cos^{2} \phi = -\rho$$

Transform the vector,

$$\mathbf{B} = y\mathbf{a}_x - x\mathbf{a}_y + z\mathbf{a}_z$$

into cylindrical coordinates:

Finally:

$$B_{\rho} = \mathbf{B} \cdot \mathbf{a}_{\rho} = y(\mathbf{a}_{x} \cdot \mathbf{a}_{\rho}) - x(\mathbf{a}_{y} \cdot \mathbf{a}_{\rho})$$

$$= y \cos \phi - x \sin \phi = \rho \sin \phi \cos \phi - \rho \cos \phi \sin \phi = 0$$

$$B_{\phi} = \mathbf{B} \cdot \mathbf{a}_{\phi} = y(\mathbf{a}_{x} \cdot \mathbf{a}_{\phi}) - x(\mathbf{a}_{y} \cdot \mathbf{a}_{\phi})$$

$$= -y \sin \phi - x \cos \phi = -\rho \sin^{2} \phi - \rho \cos^{2} \phi = -\rho$$

$$\mathbf{B} = -\rho \mathbf{a}_{\phi} + z \mathbf{a}_{z}$$

Spherical Coordinates

Constant Coordinate Surfaces in Spherical Coordinates

Unit Vector Components in Spherical Coordinates

Differential Volume in Spherical Coordinates

Dot Products of Unit Vectors in the Spherical and Rectangular Coordinate Systems

	\mathbf{a}_r	$\mathbf{a}_{ heta}$	\mathbf{a}_{ϕ}
\mathbf{a}_{χ} .	$\sin\theta\cos\phi$	$\cos\theta\cos\phi$	$-\sin\phi$
\mathbf{a}_y .	$\sin \theta \sin \phi$	$\cos\theta\sin\phi$	$\cos\phi$
\mathbf{a}_{z} .	$\cos \theta$	$-\sin\theta$	0

Example: Vector Component Transformation

Transform the field, $\mathbf{G} = (xz/y)\mathbf{a}_x$, into spherical coordinates and components

$$G_{r} = \mathbf{G} \cdot \mathbf{a}_{r} = \frac{xz}{y} \mathbf{a}_{x} \cdot \mathbf{a}_{r} = \frac{xz}{y} \sin \theta \cos \phi$$
$$= r \sin \theta \cos \theta \frac{\cos^{2} \phi}{\sin \phi}$$
$$G_{\theta} = \mathbf{G} \cdot \mathbf{a}_{\theta} = \frac{xz}{y} \mathbf{a}_{x} \cdot \mathbf{a}_{\theta} = \frac{xz}{y} \cos \theta \cos \phi$$
$$= r \cos^{2} \theta \frac{\cos^{2} \phi}{\sin \phi}$$
$$G\phi = \mathbf{G} \cdot \mathbf{a}_{\phi} = \frac{xz}{y} \mathbf{a}_{x} \cdot \mathbf{a}_{\phi} = \frac{xz}{y} (-\sin \phi)$$
$$= -r \cos \theta \cos \phi$$

 $\mathbf{G} = r\cos\theta\cos\phi(\sin\theta\cot\phi\,\mathbf{a}_r + \cos\theta\cot\phi\,\mathbf{a}_\theta - \mathbf{a}_\phi)$

Summary Illustrations

